

LA-UR-17-27132

Approved for public release; distribution is unlimited.

Title:	Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application					
Author(s):	Louis Jean, James Inglis, Jeremy David					
Intended for:	Keepin Program NSSC Summer Program Debrief					
Issued:	2017-08-08					

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. viewpoint of a publication or guarantee its technical correctness.

Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application

James Louis-Jean^{1, 2}, Jeremy D. Inglis¹

¹Los Alamos National Laboratory

C-NR: Nuclear & Radiochemistry Mass Spectrometry & Clean Chemistry Lab TA-48,0045

Department of Chemistry, Radiochemistry program

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-XXXXXX

James Louis-Jean (C-NR, TA-48,0045)

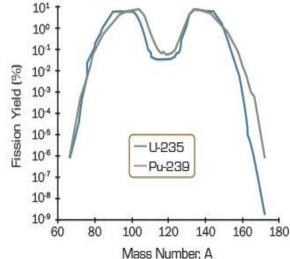
- Educational Background
 - -BA, Florida Memorial University, 2014
 - -PhD, 3rd year, University of Nevada-Las Vegas, 2015-present

Research Group/Mentor

- C-NR: Nuclear & Radiochemistry
 - Mass Spectrometry & Clean Chemistry Lab
 - -Jeremy D. Inglis, PhD

Research Topics

UNIV


Dr. Jeremy Inglis

James Louis-Jean

- Summer Research Topic: Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application
- Thesis Topic: Fundamental Chemistry of ⁹⁹Tc for Nuclear Waste Application

Research Overview and Motivation

- Nuclear forensics: evidence of nuclear materials (NMs), trafficking, enrichment, and signatures.
- Various form of material can be recovered for evidence: dust and radioactive debris.
- In nuclear devices, the neutron induced fission of 235U and 239Pu produce various rare earth elements (REEs).
- Nd, Sm, and Gd are produced in measurable quantities in non-natural isotopic abundances.
- They have many stable isotopes with high thermal neutron cross sections (>1000b).
- Results in depletion of isotopes with large cross (¹⁴⁹Sm) sections and enrichment of isotopes of those with low cross sections; consequently proportional to the neutron fluence.

Research Overview and Motivation

- The isotopic ratio of Nd, Sm, and Gd can provide important information regarding fissile material (nuclear devices, reactors), neutron environment, and device yield.
- These studies require precise measurement of Sm isotope ratios, by either TIMS or MC-ICP-MS.
- There has been an increasing trend to measure smaller and smaller quantities of Sm bearing samples.
- In nuclear forensics 10-100 ng of Sm are needed for precise measurement.

<u>Goal</u>

 \rightarrow To measure sub-ng Sm samples using TIMS for nuclear forensic analysis.


¹⁴⁴ Sm 3.07	¹⁴⁵ Sm 340d	¹⁴⁶ Sm 1.0e8a	¹⁴⁷ Sm 14.99 1.2e11a	¹⁴⁸ Sm 11.24 7e15a	¹⁴⁹ Sm 13.82	¹⁵⁰ Sm 7.38	¹⁵¹ Sm 90a	¹⁵² Sm 26.75	¹⁵³ Sm 1.9d	¹⁵⁴ Sm 22.75			
	¹⁴⁴ Pm 360d	¹⁴⁵ Pm 17.7a	¹⁴⁶ Pm 5.53a	2.02a	¹⁴⁸ Pm 5.37d	2.21d	¹⁵⁰ Pm 2.68h	¹⁵¹ Pm 1.18d	¹⁵² Pm 4.1m	¹⁵³ Pm 5.4m	¹⁵⁴ Pm 2.7 m		
		¹⁴⁴ Nd 23.8 2.4e15a	¹⁴⁵ Nd 8.3	¹⁴⁶ Nd 17.2	147 Nd 10.98d	¹⁴⁸ Nd 5.7	¹⁴⁹ Nd 1.73h	¹⁵⁰ Nd 5.6	¹⁵¹ Nd 12.4m	¹⁵² Nd 11.4m	¹⁵³ Nd 32s	¹⁵⁴ Nd 25.9s	
			¹⁴⁴ Pr 17.3m	¹⁴⁵ Pr 5.98h	¹⁴⁶ Pr 24.2m	¹⁴⁷ Pr 134m	148 Pr 2.27m	¹⁴⁹ Pr 2.8m	¹⁵⁰ Pr 6.2s	¹⁵¹ Pr 18.9s	¹⁵² Pr 3.2s	¹⁵³ Pr 4.3s	¹⁵⁴ Pr 2.3s

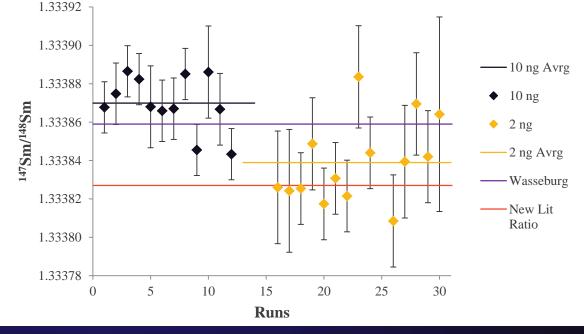
Research Approach

- Different recipes for Sm ions emission
 - H₂O:Pt/Re solution
 - → 5-1; 10-1; 20-1; 30-1
 - Samarium standard (2 ng/µL)
 - H₃PO₄ (0.1 N): 1 μL
- Samples Prep:
 - Samples were loaded on degassed Re filaments:

 \rightarrow (1st: H₃PO₄; 2nd: Pt/Re; 3rd: Sm std)

- Measurements:
 - Samples were measured on a GV IsoprobeT in static mode using 7 Faraday collector cups.

Summary of Results


		10 ng Sm Std						
	5-1	10-1	20-1	30-1	TaF gel			
Average	1.333845	1.3338352	1.3338456	1.3338381	1.333869917			
2std	5.47E-05	3.21E-05	4.45E-05	4.51E-05	2.88905E-05			
ppm	41.042351	24.101456	33.397234	33.789168	21.65915356			
Wasserburg	1.333859							
New Lit. Ratio	1.333827							

Samples loaded with the Pt/Re 10-1 solution showed better result.

- Load size: 2ng Sm std
- ¹⁴⁷Sm/¹⁴⁸Sm isotopic ratio

Different load sizes and recipes

- 2 ng Sm std with Pt/Re (10:1)
 - Show better agreement with the new literature reported ratios (newly accepted).
- 10 ng Sm std with TaF
 - Show better agreement with Wasserburg (previously accepted ratio).

Conclusion

Measured sub-ng of Sm by TIMS.

→ 2 ng of Sm std

• Investigated an effort to make precise Sm isotopic measurements.

→ Pt/Re loading recipes

Improved the amount of materials which can be analyze for forensic.

→ Trinitite: 100 ng Sm/ g

- Possibility to determine the number of fissions by measuring stable isotopes of Sm.
 - → Samrium: ^{144, 147, 148, 149, 150, 152, 154}Sm
 - \rightarrow ¹⁴⁹Sm: high neutron cross section (~40,400 barns at 0.025eV)
 - → ¹⁴⁹Sm(n, γ)¹⁵⁰Sm

FUTURE DIRECTIONS

- Continue to investigate the Pt/Re 5:1 recipes.
- Study and compare other recipes

→ TaF/H₃PO₄; TaF/Pt; Pt/Re /H₃PO₄


Acknowledgments & Summer Fun

Acknowledgments

- Los Alamos National Laboratory; C-NR: Nuclear & Radiochemistry; Mass Spectrometry & Clean Chemistry
 Lab
- Dr. Jeremy D. Inglis
- Nuclear Science & Security Consortium, NSSC

Santa Fe exploration. Picture by: Maria Pinilla

Santa Fe exploration. Picture by: Maria Pinilla

Backyard deer watching after work.

Fourth of July celebration